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Peer-to-Peer Markets with Bilateral Ratings

Abstract

We consider a platform that matches service providers with potential customers. Ratings of a
service provider reveal the quality of his service while ratings of a consumer reveal the cost to
serve her. Under a competitive search framework, we study how bilateral ratings influence market
competition and segmentation. Two types of equilibria exist under bilateral ratings. In the first
type, low-cost consumers only apply to high-quality service providers, who post a higher price, have
longer queues and are less likely to accept an application than low-quality providers. High-cost
consumers apply to all service providers and have a lower acceptance rate. In the second type of
equilibria, both high- and low-quality service providers serve all consumers. Across all equilibria,
equilibrium prices may decrease as the fraction of high-quality providers increases, as consumers
become more costly to serve, and as the platform’s commission rate increases. Compared with a
platform with unilateral ratings where only service providers are rated, a platform with bilateral
ratings may soften service providers’ competition, leading to higher equilibrium prices. Lastly, we
find that in the case of incomplete market coverage, high-quality service providers may charge lower
prices than low-quality providers in equilibrium, because by charging a lower price, a high-quality
service provider attracts more consumer applications, which enables him to cherrypick a low-cost
consumer, while a low-quality service provider faces with consumers with higher serving costs and
thus charge a higher price to make up the serving cost.

Keywords: Platform; Peer-to-Peer; Competitive Search; Matching; Reviews; Information Disclo-
sure; Segmentation



1. Introduction

The past two decades have witnessed an explosion of information technology that has given birth
to larger, faster, and more geographically diverse marketplaces. Peer-to-peer product sharing or
service platforms, in particular, help match consumers with service providers all over the globe.
They have emerged for a wide range of products and services, ranging from the old fashioned online
marketplaces of used goods (eBay, Craiglist) to the emerging specialized platforms in finance (con-
sumer loans: Prosper, Lending Club; start-up financing: Kickstarter, AngelList; currency exchange:
Transferwise, CurrencyFair), transportation (bike: Spinlister; boat: Boatbound, GetMyBoat; rides
and cars: Uber, Lyft, BlaBla Car, Turo, Getaround, Zimride, ZemCar), accommodation (short-term
rental: Airbnb, Roomorama; working space: Citizen Space; gardens: Shared Earth, Landshare), to
specialized labor supply (crafts: Etsy; creative work: Patreon; programming: UpWork; household
help: TaskRabbit).

Unlike traditional review systems such as Yelp, on which consumers can write reviews about
businesses or service providers, peer-to-peer platforms typically allow both parties of a transaction
to leave a review after the transaction. Typically, such reviews include both a rating (e.g., a score
or the number of stars) and some detailed verbal descriptions. The totality of the reviews can help
resolve some uncertainties about the service providers or the consumers. In this paper, we will use
the terms “reviews" and “ratings" interchangeably. A consumer can often choose whether to initiate
a transaction based on reviews of the service provider, and a service provider can choose whether
to accept a transaction based on reviews of the consumer. For example, on Airbnb, a traveller can
decide whether to initiate an application to stay with a particular host, after seeing the profile of
his property and customer reviews of his past transactions. A host, upon seeing an application, can
decide whether to accept it based on other hosts’ reviews of the traveller’s previous stays. While
reviews of the service provider often contain important information on the unknown quality of the
service or product, reviews of a customer can help reveal the cost to serve that customer. One
Airbnb host’s review of a particular customer, for example, states that:1 “she overwhelmed them
(the hosts) and insisted on free breakfast, having them take the trash out, and run her some errands.
She harassed my hosts in person and also calling/texting throughout all hours...Still she complained
to Airbnb and got her bill cut in half. Do not host this girl."

When a traveller has such reviews from previous hosts, it indicates to the host that the traveller
is of high maintenance and costly to serve. If the host believes that he can easily find better
guests, it is only rational for him to decline applications from such costly consumers. Recent

1See http://socawlege.com/7-worst-airbnb-reviews-on-the-internet/3/, accessed in August 2017.
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empirical studies (e.g., Horton 2014, Fradkin 2015) have systematically documented that popular
service providers on oDesk and Airbnb get contacted by multiple buyers and often have to reject
certain guests due to capacity constraints. The bilateral rating system has become a useful tool
that enables providers to segment the market by potentially rejecting certain customers based on
their estimated cost to serve. With Uber, a driver has the option to automatically block service
requests from riders who have poor reviews or fail other criterion that the drivers can define.
On retail platforms such as eBay, the service providers can also determine which buyers to serve
and some sellers specifically disallow bidders or buyers with poor reviews. In addition to organic
reviews on peer-to-peer platforms, certain service providers can use third-party review sites such as
ratemycustomers.com, badbuyerlist.org, and customers2avoid.com to avoid costly customers.

As the success of a peer-to-peer platform critically depends on the credibility of the rating system,
most platforms adopt careful measures to make reviews reliable and trustworthy: they typically only
allow actual parties involved in transactions to write reviews, and to prevent retaliation (e.g., Nosko
and Tadelis 2015, Bolton et al. 2013, Horton and Golden 2015), some platforms do not make the
reviews available until both parties have submitted a review to the platform while others offer
additional incentives for truthful reporting (Fradkin et al., 2015).2

One key advantage of online peer-to-peer marketplace, when compared with traditional service
markets with lengthy upfront licensing and screening, is the continuous monitoring that grows
organically out of the transaction-based reviews within the system. In fact, a central feature of
peer-to-peer platforms is their reliance on user data to match buyers and sellers and to monitor
behavior. As the bilateral rating system reduces information asymmetries, reputation is built,
and trust-based services become possible while they would not have been in traditional offline
markets given the prohibitive search costs. In this paper, we examine how the bilateral ratings
change key equilibrium outcomes, particularly pricing and competition, in peer-to-peer markets.
Compared with unilateral ratings, we view bilateral ratings as the disclosure of more information of
one side of the market to the other side. We are interested in understanding the following research
questions. Compared to traditional marketplaces with only unilateral ratings of the sellers or service
providers, how does the availability of bilateral ratings affect consumers’ incentive to request service
and the competition between service providers? How do service providers’ equilibrium prices and
acceptance rates depend on the rating mechanism? Do service providers benefit from ex ante
knowing consumers’ serving cost and the ability to reject high-cost consumers? If so, who benefits
the most?

2https://www.forbes.com/sites/sethporges/2014/10/17/the-strange-game-theory-of-airbnb-reviews,
accessed in August 2017.
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We address these questions by analyzing a matching model with heterogenous service providers
and consumers. Providers differ in the quality of their services, which consumers can learn from
provider’s site description, ratings, etc. Consumers differ in their estimated serving cost, which
providers can learn from customer reviews and ratings. In essence, our model zooms into three
key micro-aspects of peer-to-peer markets that are often discussed but rarely analyzed in the cur-
rent literature (e.g., Einav et al. 2016): search frictions, product differentiation, and consumer
heterogeneity.

Our model features large numbers of service providers and consumers, with a fixed ratio between
the two. Each consumer submits one application to a chosen provider, and each provider has the
capacity to serve one consumer. We consider a one-shot game that is rooted in the reality of
existing peer-to-peer platforms, in which consumers simultaneously submit their applications and
service providers then simultaneously choose which application to accept.

When consumers make their application decisions, they consider the expected utility upon ac-
ceptance of the application and the acceptance likelihood. In particular, all consumers would find
the same kind of providers desirable, the kind who offers higher net surplus. However, the low-cost
consumers are more confident that their applications will be accepted given their good ratings, and
are more likely to apply to the desirable providers than the high-cost consumers.

Market inefficiency comes from two sources. First, multiple consumers may apply for the same
service provider and all but one get rejected, while some service providers may receive no applica-
tion. As a result, some agents on both sides of the market get unmatched. This is the so-called
coordination frictions. An increase in the matching rates enhances total welfare. Second, if the cost
to serve a consumer depends on the quality of the service being provided (e.g., an hour of time
that is needed to serve a costly consumer may be more costly to the owner of a high-end apart-
ment than that of an inexpensive apartment), search friction may also come from bad matches,
matches between good providers and bad consumers. In this case, positive assortment in which
low-maintenance consumers are matched with high-quality service providers will enhance social
welfare. In our model, we allow the cost to serve a consumer to either depend or not depend on the
quality of the service being provided. Therefore, positive sorting may or may not necessarily exist
in our setting. Coordination frictions will play a major role in creating market inefficiencies in our
model.

Service providers set prices to maximize profit. We show that there exist two kinds of price
equilibria under bilateral ratings. In one kind of equilibria, prices are set in a way that high-quality
service providers are more attractive in terms of providing higher net surplus to accepted consumers.
As a result, low-cost consumers apply only to the high-quality service providers while high-cost con-
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sumers apply to all providers. The high-quality providers, as a result, have more attractive applicant
pools, longer queues, and a lower acceptance rates than low-quality providers. Interestingly, high-
cost consumers may get severely penalized for their bad reputations by a disproportionately low
acceptance rate: a high-cost consumer would rather reimburse the service provider of her serving
cost in order to be treated as a low-cost consumer. In the second kind of equilibria, both high-
and low-quality providers are equally attractive. As a result, both high- and low-cost consumers
apply to both of them. Nevertheless, low-cost consumers always have a higher acceptance rate than
high-cost consumers.

While the multiplicity of equilibria prevents us from a close-form characterization of comparative
statics, numerical analysis reveals interesting patterns. First, equilibrium prices tend to decrease
with the ratio of service providers to consumers, the fraction of high-quality service providers,
consumers’ serving costs, and the platform’s commission rate. To understand the comparative
statics, it is worth noting an interesting feature of our model—the composition of consumers faced
by a service providers is endogenous, which depends on the service provider’s price as well as others’
prices. When a service provider lowers his price, he becomes more competitive among consumers.
Given increased competition, consumers with lower costs are more confident to be selected. As a
result, more low-cost consumers will apply to the service provider while less high-cost consumers
will stay. Therefore, as a service provider lowers his price, he faces a better consumer pool and a
lower average serving cost.

We also analyze the market equilibrium under unilateral ratings where consumers’ cost infor-
mation remains private information. When compared with unilateral ratings, bilateral ratings can
raise market prices through enabling cost-based customer segmentation and alleviating competi-
tion among service providers. The low-cost consumer derive higher surplus under bilateral ratings
because they are more likely to be accepted, and the high-cost consumers derive lower surplus
given the higher prices. The overall consumer surplus may go down when customer ratings become
available, although total surplus in this case can still increase due to higher prices and provider
profits. In general, the welfare implications of bilateral ratings are not a clear-cut—it can increase
or decrease total and consumer welfare compared with the case of unilateral ratings.

Finally, we also consider the possibility of incomplete market coverage, where some consumers’
serving cost is so high that it is not profitable for certain service providers to serve them. In this
case, it is desirable for service providers to avoid these customers. Interestingly, we find that when
there is a high fraction of high-quality providers, their prices may turn out to be lower than that of
low-quality providers in equilibrium. The intuition is that high-quality service providers charge a
low price and attract many consumer applications, so that they can cherrypick a low-cost consumer.
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Consequently, low-quality providers get the applications from the most expensive consumers and
have to charge a high price to make up the high serving costs.

1.1. Literature Review

Our paper builds on the competitive search literature in labor economics pioneered by Peters (1991),
Montgomery (1991), and Burdett et al. (2001). In this framework, firms post jobs and wages, and
workers conduct directed search over jobs based on the wages. As its counterpart in our setting,
service providers post listings and prices, and consumers conduct directed search over listings based
on the prices. Compared with other search and matching models (see Rogerson et al. (2005) for
a survey), this framework is suitable for our problem because it unlocks the blackbox of matching
functions by explicitly modeling the matching process of heterogeneous agents on both sides of the
market. Early literature (e.g., Burdett et al. 2001) focus on homogenous agents on both sides of
the market, while more recent papers start incorporating heterogeneity of agents, with a particular
attention to the condition for positive assortative matching (e.g., Eeckhout and Kircher 2010, Chade
et al. 2017). The most related paper in this literature is Shi (2002), who considers matches between
workers with heterogenous skills and firms with heterogenous technologies and assumes that high-
skill workers generate higher output when they are matched with high-technology firms. Therefore,
there exists a possible positive sorting in Shi (2002), when high-skill workers are matched with high-
technology firms. Similar with Shi (2002), we also consider matching between heterogenous agents
on both sides of the market, but our market structure is different in that high-cost consumers can be
equally costly for both high- and low-quality service providers.3 In contrast, positive assortment is
not the driving force underlying our model. Also, from a modeling perspective, we have a continuous
distribution of customer types, which enables a natural characterization of market segmentation,
and requires quite different equilibrium analysis techniques.

Our research also contributes to the growing literature on behavior-based price discrimination.
In our setting, service providers can learn about their costs to serve a consumer based on either
the consumer’s past interaction with them or her reviews on the online peer-to-peer platform.
This contrasts with the bulk of the literature on behavior-based price discrimination, where firms
discriminate based on their customers’ willingness to pay that they learn from their past purchases.
For example, a firm may discriminate between its own and the competitors’ customers (e.g., Pazgal
and Soberman 2008, Shin and Sudhir 2010, Zhang 2011). A monopolist firm that is able to recognize

3We also allow a consumer to be more costly for high-quality service providers than for low-quality service
providers. Our main result of the paper does not depend on the relationship between consumers’ costs and service
providers’ quality.

5



past customers may also optimally charge returning and new customers different prices since their
differing willingness to pay is revealed by past purchases (e.g., Hart and Tirole 1988, Schmidt 1993,
Villas-Boas 2004). In our model, firms cannot charge different prices based on the consumers’
willingness to pay, nor can the firms tailor different prices based on the consumers’ serving cost;
however, the firm can decide whether to serve a specific consumer (at the uniform price) based on
the cost to serve that consumer. In this respect, our paper relates most closely to Shin et al. (2012),
who show that, after learning the customers’ costs to serve, a monopolist may find it optimal to
fire some high-cost customers even if they are profitable.

Finally, our paper makes a key contribution to the emerging literature on peer-to-peer plat-
forms, collaborative consumption and sharing economy (e.g., Einav et al. 2016, Veiga and Weyl
2017). Existing research in this literature has generally focused on how peer-to-peer markets differ
from traditional markets with professional sellers, discussing the impact of peer-to-peer markets on
traditional markets (e.g., Zervas and Byers 2016, Jiang and Tian 2016, Tian and Jiang 2017, Gong
et al. 2017), value of flexible work (e.g., Chen et al. 2017), impact of choice sets (e.g., Halaburda
et al. 2016), search frictions (e.g., Horton 2014, Fradkin 2015, Arnosti et al. 2015), potential in-
centive misalignment between consumers and the platform (e.g., Armstrong and Zhou 2011, Eliaz
and Spiegler 2011, Hagiu and Jullien 2011, De Cornière and Taylor 2014), and comparison of dif-
ferent pricing formats such as auctions, posted prices and surge pricing (e.g., Einav et al. 2015,
Gomez Lemmen Meyer 2015, Cullen and Farronato 2015, Guda and Subramanian 2017, Castillo
et al. 2017). In terms of the reputation and trust in these markets, the literature has focused on
the sellers’ incentives to truthfully reveal information (e.g., Jin and Leslie 2003, Jin and Kato 2007,
Lewis 2011), the buyers’ incentives to leave feedbacks (e.g., Bolton et al. 2013, Nosko and Tadelis
2015, Horton and Golden 2015), and fake reviews (e.g., Mayzlin et al. 2014, Luca and Zervas 2016).
While many potential factors may hinder truthful reporting, the flourishing of peer-to-peer markets
itself is strong evidence that the reputation systems work well enough to screen out most of the
really bad actors and deter highly fraudulent behaviors (e.g., Resnick et al. 2002, Dellarocas 2003,
Cabral and Hortacsu 2010). A contemporaneous paper by Romanyuk (2016) is the most related
paper, which also investigates the platform’s information disclosure problem on peer-to-peer mar-
kets. However, his paper is not based on competitive search framework and is quite different from
ours. For example, the sellers in his framework do not set prices, which are assumed to be exoge-
nously given. To our best knowledge, our paper is the first theoretical attempt to understand how
bilateral ratings in peer-to-peer markets reduce information asymmetry and consequently affect the
matching outcomes, equilibrium prices and welfare.

The remainder of the paper proceeds as follows. Section 2 introduces our competitive search
model of a peer-to-peer market. Section 3 characterizes the equilibrium outcomes. In Section 4,
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we compare these outcomes to those in the traditional market, with unilateral ratings, in order
to understand the impact of bilateral ratings. Section 5 offers a discussion on robustness of the
results by discussing the possibility of incomplete market coverage, which also generates some new
insights. Lastly, Section 6 concludes by offering managerial implications of our results and directions
for future work.

2. The Model

Consider a market with M service providers distinguished by service quality. A fraction γ of them
are of H type and provide a service with high quality qH ; the remaining 1− γ fraction are of L type
and provide a service with low quality qL, where 1 > γ > 0 and qH ≥ qL > 0. It is assumed that
the quality of each provider’s service is exogenously given. The fixed cost of service provision for
all providers is normalized to zero. Service providers have capacity constraints. Particularly, we
assume that each service provider can only serve at most one consumer. An example is hosts on
AirBnB, most of whom only have one apartment for lease.

There are N consumers, who differ in their costs to serve. We allow, but do not assume, a
consumer’s cost to serve to differ for different service providers. Particularly, it is assumed that to
serve a consumer of cost type θ, a service provider of quality q incurs cost θg(q), where g(·) > 0 and
g′(·) ≥ 0. Consumers with a higher θ are more costly to serve. Two special cases are of particular
interest. First, g(q) = 1, in which case, different service providers incur the same cost to serve a
consumer. Second, g(q) = q, in which case, a high-quality service provider incurs higher cost than
a low-quality service provider when serving the same consumer. We consider below a general setup
of g(·) that can incorporate both cases. Consumers’ cost type θ follows a distribution function F (·)
in [0, θ̄]. The PDF f(θ) ≡ F ′(θ) exists and it is positive and finite for ∀θ ∈ [0, θ̄]. We also assume
that consumers are homogeneous in their preferences for service quality. Particularly, a consumer’s
utility from a service of quality q and price p is given by u(p, q) = q − p.

All service providers and consumers meet and trade with one another on the peer-to-peer plat-
form. As with traditional markets, the platform can provide consumers with information on a
provider’s service quality such as service specifications, descriptions of the service or product in
texts, pictures and videos, as well as customer reviews. We thus model providers’ service qualities
as common knowledge to focus on information disclosure of customer costs. The platform imple-
ments a bilateral review system, if it also enables service providers to give reviews to consumers and
discloses these reviews along with other consumer information to all service providers. We assume
that this information fully reveal consumers’ cost information to service providers. Therefore, both
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q and θ are common knowledge under bilateral ratings. In contrast, a unilateral review system is
implemented if the platform does not enable service providers to rate consumers or does not disclose
consumer information to service providers, in which case, the consumers’ cost type θ remains to be
private information. We focus on the bilateral review system in the main model and consider the
alternative unilateral review system in Section 4.

We consider a matching game in three stages. First, all service providers post prices simultane-
ously. The posted prices are observable by all agents in the marketplace. It is assumed that service
providers cannot price discriminate consumers based on their reviews, i.e., the posted prices do not
depend on consumers’ cost type θ. This is a reasonable assumption considering most real-world
peer-to-peer markets. Following the vast literature of search theory (Rogerson et al. 2005), we
assume that service providers can ex ante commit to their posted prices, which also applies to most
peer-to-peer markets. Second, all consumers simultaneously submit their applications to service
providers. Each consumer can only submit at most one application but is allowed to use a mixed
strategy by randomizing the submission of her application across multiple service providers. This
means that in equilibrium the consumer applies to any given service provider with an optimized
probability. An immediate example one can think of is Airbnb, where consumers can submit their
applications to service providers. A consumer almost never submits more than one application for
a particular trip as she would have to pay for the stay if the application gets accepted. Lastly, a
service provider decides which application to accept if he receives one or more applications from
consumers. He accepts at most one application, and when he does accept one, he accepts the con-
sumer with the best reviews, i.e., the lowest θ, to minimize serving cost, because the price has been
given and consumers are homogeneous along all other dimensions. Upon his acceptance, the service
provider provides service to the consumer and receives the posted price. When a service provider
receives no applications or turns down all the applications he receives, he does not get involved in a
transaction and receives zero payoff. When a consumer does not submit an application or has her
application rejected, she also gets zero payoff. We also assume that the matching platform charges
δ percent of the transaction price from each match as a commission fee.

Before proceeding to analyze the game, it is worth noting that in our competitive search frame-
work above, market frictions and mismatches do not result from agents’ search costs, instead they
originate from coordination frictions: more than one consumer may apply to the same service
provider, and some service providers may receive no applications. If we allow unmatched agents to
play the same matching game again, some of them would get matched. In theory, we can extend the
current one-shot matching game to multiple rounds, which will reduce coordination frictions and
mismatches. However, this is not something we intend to model in this paper because coordination
frictions are important in many peer-to-peer markets and play a key role in the informational effects
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of bilateral ratings. Also, competitive search with heterogeneous agents in multiple periods is very
difficult to analyze.

To analyze the matching game, we follow the literature (e.g., Butters 1977, Montgomery 1991,
Peters 1991, Shi 2002, Shimer 2005) and assume that the market is very large, i.e., M,N → ∞,
and neither side of the market is infinitely larger than the other side, i.e., 0 < n ≡ N/M <∞. This
assumption facilitates the tractability of the model.4 Given the large market, it is natural to restrict
ourselves to symmetric strategies on both sides of the market. That is, we consider the case that
all service providers of type j ∈ {H,L} post the same price pj, and all consumers of type θ ∈ [0, θ̄]

use the same application strategy aj(θ) (j ∈ {H,L}), which is the probability of submitting an
application to one particular service provider of type j.

We will solve the game below by backward induction.

2.1. Consumers’ Problem

Let us first analyze the consumers’ application strategies, given the service providers’ qualities qH
and qL, and the posted prices pH and pL. Following the competitive matching literature (e.g.,
Shi 2002), we define the queue length of a service provider of type j as xj(θ) ≡ Nf(θ)aj(θ).
Subsequently, xj(θ)dθ is the number of applications that the provider j receives from consumers
in [θ, θ + dθ]. As M and N go to infinity, aj(θ) goes to zero while xj(θ) converges to a finite
positive number. Therefore, it is easier to work with xj(θ) than aj(θ). Hereafter we work with
xj(θ) (j ∈ {H,L}) and call it consumer θ’s application strategy. Intuitively, under a large market,
if a subset of consumers with zero measure in

[
0, θ̄
]
change their application strategies xj(θ) (j ∈

{H,L}), the market equilibrium will remain unchanged. Therefore, it is reasonable and technically
convenient to stipulate that xH(θ) and xL(θ) are piecewise continuous with a finite number of
discontinuities. Each consumer submits one application, so we have the normalization condition
γMaH(θ) + (1− γ)MaL(θ) = 1, or equivalently,

γxH(θ) + (1− γ)xL(θ) = nf(θ). (1)

Service providers always prefer consumers with lower serving cost, because their prices have
been posted and thus are given. Consider an application from a consumer of type θ to a service
provider of type j, this application gets accepted by the service provider if and only if he has not

4An equivalent representation of the model is to consider a set of service providers of measure 1 and a set of
consumers of measure n. Each individual service provider or consumer is then interpreted as an infinitesimally small
subset.
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received any application from consumers of types lower than θ. This happens with the following
probability

bj(θ) = lim
N→∞

θ∏
t=0

(1− aj(t))Nf(t)dt = lim
N→∞

θ∏
t=0

(
1− xj(t)

Nf(t)

)Nf(t)dt

=
θ∏
t=0

e−xj(t)dt = e−
∫ θ
0 xj(t)dt. (2)

Obviously, bj(θ) decreases with θ, which implies that more costly consumers expect a lower accep-
tance rate.

A consumer maximizes her expected utility by deciding which service provider to apply to. Let
U(θ) be the maximum expected utility of consumer θ , which is taken as given by individual agents
when N,M →∞. A consumer of type θ submits an offer to a service provider of type j with positive
probability if and only if her expected utility from that service provider, bj(θ)(qj − pj), is equal to
or greater than U(θ). However, it can never be the case that bj(θ)(qj − pj) > U(θ). Otherwise, all
consumers with cost type θ will submit an offer to that service provider with probability 1, which
drives down the acceptance probability bj(θ) until bj(θ)(qj − pj) = U(θ). Therefore, consumer θ’s
strategy will be,

xj(θ) =

{
∈ (0,∞), if bj(θ)(qj − pj) = U(θ),

0, if bj(θ)(qj − pj) < U(θ).
(3)

Equation (3) illustrates a consumer’s tradeoff when deciding which service provider to apply to.
On one hand, she prefers service providers that provide a higher utility upon acceptance, qj − pj;
on the other hand, given that all other consumers have the same preference, service providers with
higher surplus qj−pj are also more competitive and thus may provide a lower acceptance rate bj(θ).
According to equation (2), we already know that bj(θ) decreases with θ. Intuitively, consumers with
lower θ are less concerned with the probability of being rejected, because they get rejected only
when there exists at least one other consumer with even lower θ who applies to the same service
provider. As a result, consumers with low θ will apply to service providers with higher qj−pj, which
drives down the acceptance rate of those service providers. Consequently, consumers with high θ
may become indifferent between the two types of service providers, because service providers with
higher qj − pj deliver a lower acceptance rate while service providers with lower qj − pj deliver a
higher acceptance rate. Formally, we prove the following theorem, which characterizes consumers’
application strategies given the service providers’ qualities and posted prices. The proof is in
Appendix.

Theorem 1: Suppose qj − pj > 0 for j ∈ {H,L}. Define

θH ≡ F−1

[
γ

n
ln

(
qH − pH
qL − pL

)]
and θL ≡ F−1

[
1− γ
n

ln

(
qL − pL
qH − pH

)]
.
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1. If qH−pH
qL−pL

≤ e−
n

1−γ , all consumers apply to service providers of type L only. For θ ∈
[
0, θ̄
]
,

xH(θ) = 0, xL(θ) =
n

1− γ
f(θ),

U(θ) = (qL − pL)e−
n

1−γF (θ).

2. If e−
n

1−γ < qH−pH
qL−pL

< 1, consumers with type θ ∈ [0, θL] apply to service providers of type L
only, and consumers with θ ∈

(
θL, θ̄

]
apply to both types of service providers. For θ ∈

[
0, θ̄
]
,

xH(θ) =

{
0, 0 ≤ θ ≤ θL

nf(θ), θL < θ ≤ θ̄
, xL(θ) =


n

1− γ
f(θ), 0 ≤ θ ≤ θL

nf(θ), θL < θ ≤ θ̄
,

U(θ) =

 (qL − pL)e−
n

1−γF (θ), 0 ≤ θ ≤ θL

(qL − pL)

(
qH − pH
qL − pL

)γ
e−nF (θ), θL < θ ≤ θ̄

.

3. If qH−pH
qL−pL

= 1, all consumers apply to both types of service providers. For θ ∈
[
0, θ̄
]
,

xH(θ) = xL(θ) = nf(θ),

U(θ) = (qH − pH)e−nF (θ).

4. If 1 < qH−pH
qL−pL

< e
n
γ , consumers with type θ ∈ [0, θH ] apply to service providers of type H only,

and consumers with θ ∈
(
θH , θ̄

]
apply to both types of service providers. For θ ∈

[
0, θ̄
]
,

xH(θ) =


n

γ
f(θ), 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ θ̄
, xL(θ) =

{
0, 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ θ̄
,

U(θ) =


(qH − pH)e−

n
γ
F (θ), 0 ≤ θ ≤ θH

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e−nF (θ), θH < θ ≤ θ̄
.

5. If qH−pH
qL−pL

≥ e
n
γ , all consumers apply to service providers of type H only. For θ ∈

[
0, θ̄
]
,

xH(θ) =
n

γ
f(θ), xL(θ) = 0,

U(θ) = (qH − pH)e−
n
γ
F (θ).

Figure 1 illustrates Theorem 1 intuitively. When qH − pH is significantly higher than qL − pL,

11



all consumers apply to high-type service providers only, because the additional surplus from these
providers more than compensates their lower acceptance rate. When qH−pH is only slightly greater
than qL − pL, only consumers with cost type θ below some threshold θH will apply to high-type
service providers. Consumers with θ above the threshold θH are indifferent between the two types
of service providers. When qH−pH is equal to qL−pL, all consumers are indifferent between the two
types of service providers, and apply to them with equal probability. Similarly, we can understand
the cases when qH − pH is smaller than qL − pL.	

!	

"# − %#
"& − %&

	

'
(
)	

'*
(
+*) 	

1	

0	 !̅	!# 	!& 	

apply to H with /#(!) > 0  
apply to L with /&(!) > 0  

Figure 1: All potential market segmentations.

From a different perspective, Theorem 1 and Figure 1 also identify all possible market segmen-
tations. One type of service providers could serve consumers in the entire cost spectrum, while the
other type of providers serve a segment (subset) of consumers.

Lastly, it is worth noting that we have only considered consumers’ application strategies when
all service providers of the same type post the same price, i.e., symmetric pricing. When we consider
an individual service provider’s pricing decision as a next step, we have to consider his deviation
of price with respect to other service providers in order to pin down the equilibrium. This leads to
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analysis of asymmetric prices. How can we utilize the consumers’ application strategies derived only
under symmetric pricing in Theorem 1 to inform an individual service provider’s pricing decision?
The key lies in the large market assumption thatM,N →∞. Under this assumption, an individual
service provider’s deviation in price would not change individual consumers’ maximum expected
utility U(θ). We analyze service providers’ pricing problem next.

2.2. Service Providers’ Problem

Let us consider an individual service provider of type j, who posts price p0
j for j ∈ {H,L}. Given

all other service providers’ prices, pH and pL, U(θ) is completely determined by Theorem 1, which
is taken as given by this individual service provider when choosing his price p0

j . Now consider
consumers’ application strategy for this service provider. Given equation (3), we know that if
U(θ) < qj−p0

j , consumers of type θ apply to this service provider until b0
j(θ)(qj−p0

j) = U(θ), where
b0
j(θ) is this service provider’s acceptance rate. On the other hand, if U(θ) ≥ qj − p0

j , consumers
of type θ will not apply to this service provider with price p0

j , because they have already got other
more attractive service providers to apply to, who promise her a higher expected utility. From
Theorem 1, we know that U(θ) is a strictly decreasing function. Therefore, we have,

b0
j(θ) =

U(θ)

qj − p0
j

for θ ∈ [θ0, θ̄], where θ0 =

{
0, qj − p0

j ≥ U(0),

U−1(qj − p0
j), otherwise.

(4)

Notice that by definition, b0
j(θ) is the probability that the service provider has not received an

application from consumers of types lower than θ. Correspondingly, 1 − b0
j(θ) is the probability

that the service provider has received at least one application from consumers of types lower than
θ. Therefore, d

(
1− b0

j(θ)
)

= −db0j (θ)

dθ
dθ is the probability that the service provider has received

at least one application from consumers of types in [θ, θ + dθ]. When a service provider receives
no application, he ends up with no match and thus zero profit. When a service provider of type
j receives and accepts an application from a consumer of type θ, he earns revenue p0

j , pays the
commission fee of δp0

j to the platform, and incurs serving cost of θg(qj). Therefore, we can write
down this individual service provider’s expected profit π0

j (p
0
j ; pH , pL) as the following, given his price

13



p0
j as well as all other service providers’ prices:

π0
j (p

0
j ; pH , pL) =

∫ θ̄

θ0

[
(1− δ)p0

j − θg(qj)
]
·
[
−

db0
j(θ)

dθ

]
dθ

=
[
(1− δ)p0

j − g(qj)θ
0
]
b0
j(θ

0)−
[
(1− δ)p0

j − g(qj)θ̄
]
b0
j(θ̄)− g(qj)

∫ θ̄

θ0

b0
j(θ)dθ

=



−(1− δ)
[
U(0)− U(θ̄)

]
−
∫ θ̄

0
[(1− δ)qj − g(qj)θ]U

′(θ)dθ

qj − p0
j

, p0
j ≤ qj − U(0),

(1− δ)U(θ̄) + (1− δ)p0
j − g(qj)U

−1(qj − p0
j)

−
(1− δ)U(θ̄)qj + g(qj)

[∫ θ̄
U−1(qj−p0

j )
U(θ)dθ − θ̄U(θ̄)

]
qj − p0

j

, otherwise.

(5)

The second equality above is due to integration by part and rearrangement of terms; to get the
third equality, we have used b0

j(θ) in equation (4). In writing down the profit function π0
j (p

0
j ; pH , pL)

above, we have assumed that the consumer market is fully covered: the service provider can make
nonnegative profit even from the most costly consumer, i.e., p0

j ≥ θ̄g(qj)/(1 − δ). We verify this
assumption in equilibrium below and discuss alternative assumptions in Section 5.

The service provider’s objective is to maximize the expected profit π0
j (p

0
j ; pH , pL) by choosing the

posted price p0
j . In equilibrium, we must have p0

j = pj. A pure strategy Nash equilibrium (p∗H , p
∗
L)

is determined by
p∗j = arg max

p0
j

π0
j (p

0
j ; p
∗
H , p

∗
L), for j ∈ {H,L}. (6)

As with most competitive search models in the literature (e.g., Rogerson et al. 2005), there is no
closed-form expression for the equilibrium prices (p∗H , p

∗
L). We analyze the equilibrium as follows.

We first notice from equation (5) that π0
j (p

0
j ; pH , pL) increases with p0

j when p0
j ≤ qj − U(0).5

Therefore, we only need to consider the case that p0
j ≥ qj − U(0). Correspondingly, π0

j (p
0
j ; pH , pL)

is given by the second case in equation (5). The optimal solution to the optimization problem
in equation (6) must be either a corner solution with p0

j = qj − U(0) or an interior point with
p0
j > qj − U(0).6

Meanwhile, from Theorem 1, we know that U(0) = max{qH − pH , qL − pL}. Suppose in equi-
librium, qH − p∗H > qL − p∗L. In this case, U(0) = qH − p∗H . Then the maximizing point of
π0
H(p0

H ; pH , pL) will be the corner solution of p0
H = qH − U(0), which indeed is equal to p∗H , and

5This is because U ′(θ) < 0 and (1− δ)qj − g(qj)θ > (1− δ)p0j − g(qj)θ̄ ≥ 0.
6Notice that the corner solution of p0j = qj−U(0) is possible, because π0

j (p0j ; pH , pL) is continuous at p0j = qj−U(0)

and ∂p0
j
π0
j (p0j ; pH , pL) jumps by −(1− δ)U(0)p0j/(qj − p0j )2 < 0 when p0j increases from (qj −U(0))− to (qj −U(0))+.
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the maximizing point of π0
L(p0

L; pH , pL) will be the interior solution of p∗L, which indeed satisfies
that p∗L > qL − U(0) = qL − (qH − p∗H). Similarly, we can analyze the other two cases with
qH − p∗H < qL− p∗L and qH − p∗H = qL− p∗L. The first-order necessary condition of optimality for the
optimization problem in equation (6) can be summarized as the following,

qH − p∗H < qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

θL

U(θ)dθ = 0

(1− δ)(qL − p∗L)2 −
[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

0

U(θ)dθ ≤ 0

, or (7)


qH − p∗H = qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

0

U(θ)dθ ≤ 0

(1− δ)(qL − p∗L)2 −
[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

0

U(θ)dθ ≤ 0

, or (8)



qH − p∗H > qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

0

U(θ)dθ ≤ 0

(1− δ)(qL − p∗L)2 −
[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

θH

U(θ)dθ = 0

. (9)

U(θ) in equations (7), (8) and (9) is given in cases 2, 3, and 4 respectively in Theorem 1. Cases 1
and 5 in Theorem 1 never occur in equilibrium, because in these cases, all consumers apply only to
one type of service providers. Consequently, the other type of service providers get zero profit. It is
of each of these individual service providers’ interest to decrease his price until either case 2 or 4 is
satisfied. Again, in writing down equations (7)-(9), we have already utilized the expressions of U(θ)

in Theorem 1. Particularly, in equation (7), U−1(qL − p∗L) = θH according to case 2 in Theorem 1,
and in equation (9), U−1(qH − p∗H) = θL according to case 4 in Theorem 1.

We also require the profit function π0
j (p

0
j ; pH , pL) in equation (5) to be concave in p0

j ∈ [qj −
U(0), qj] to ensure that the Nash equilibrium (p∗H , p

∗
L) exists. In the appendix, we prove that this
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is satisfied if and only if for j ∈ {H,L},

nf(θ) ≥


(1− γ)U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ
U(t)dt

] , for ∀θ ∈ [0, θL]

U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ
U(t)dt

] , for ∀θ ∈ [θL, θ̄]

 if qH − pH ≤ qL − pL,

nf(θ) ≥


γU(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ
U(t)dt

] , for ∀θ ∈ [0, θH ]

U(θ)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
θ
U(t)dt

] , for ∀θ ∈ [θH , θ̄]

 if qH − pH > qL − pL.

(10)

This implies that we must impose a lower bound on nf(·) to ensure concavity of π0
j (p

0
j ; pH , pL). The

intuition is the following. For π0
j (p

0
j ; pH , pL) to be concave, we require π0

j (p
0
j ; pH , pL) to first increase

and then decrease to zero as p0
j increases from 0 to qj. Let us consider the interval of p0

j where
π0
j (p

0
j ; pH , pL) is supposed to decrease with p0

j . Given a marginal increase in price p0
j , the marginal

number of consumers who switch from the deviating service provider to others is proportional to
nf(θ0), which cannot be too small. Otherwise, the service provider may be willing to give up these
consumers. In other words, π0

j (p
0
j ; pH , pL) may increase with p0

j again.

Equation (10) implies that a general distribution of consumers’ cost types may lead to non-
concave profit functions, which may in turn result in non-existence of a pure strategy Nash equilib-
rium. Therefore, to facilitate equilibrium analysis below, we restrict our attention to the uniform
distribution only, where F (θ) = θ/θ̄. With uniform distribution, the concavity condition in equation
(10) essentially imposes a lower bound on n.

3. The Equilibrium

In this section, we analyze the equilibrium based on the optimality conditions (7)-(9), and the
concavity condition (10). We characterize the equilibrium by the following theorem.

Theorem 2: Assume uniform distribution of F (·) and concavity condition (10).

• There always exist an infinite number of solutions to the problem in equation (6), which satisfy
qH − p∗H = qL − p∗L = ε for ∀ε ∈ (0, ε̄], where,

ε̄ = min
j∈{H,L}

e−nqj +
1− (n+ 1)e−n

(1− δ)n
θ̄g(qj) ≥

θ̄g(gL)

2(1− δ)n
> 0.
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• In the case that g(q) = 1 or g(q) = q, all equilibria satisfy that qH − p∗H ≥ qL − p∗L.

Theorem 2 shows that (p∗H , p
∗
L) = (qH − ε, qL − ε) is always an equilibrium for ε positive but

sufficiently small.7 This parallels with the well-known Diamond Paradox (Diamond 1971), where
competitive sellers can gain monopolistic power in a homogeneous product market with consumer
search costs. To reiterate, in our model, market friction is not modeled by consumer search costs,
but instead, by coordination frictions.

Theorem 2 also shows that with g(q) = 1 or g(q) = q, it never occurs in equilibrium that
qH − p∗H < qL − p∗L. That is to say, in equilibrium, whenever a consumer is accepted, she expects
the same or higher utility from service providers with higher quality. This implies that there are
only two possible market segmentations in equilibrium, as shown by Figure 2: either all consumers
apply to both types of service providers; or low-cost consumers apply solely to high-quality service
providers and high-cost consumers apply to both types of service providers.
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Figure 2: Equilibrium market segmentations.

Figure 3 shows all price equilibria under one parameter setting, with n = 1, γ = 0.5, qH = 2qL,
δ = 0.1, θ̄ = 0.2, and g(q) = 1. We use the same parameter setting for the following analysis, and
refer to it as “the parameter setting" for simplicity. We can see that under this parameter setting,
both types of price equilibria are possible: there are infinite equilibria with qH − p∗H = qL− p∗L, and

7We do not consider the case with ε = 0, because in this case, consumers expect zero utility from all service
providers. Consequently, each consumer is indifferent between the two types of service providers, and there is
arbitrariness in consumers’ application strategy.
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there are also infinite equilibria with qH − p∗H > qL − p∗L. Moreover, compared with equilibria with
qH − p∗H = qL − p∗L, equilibria with qH − p∗H > qL − p∗L are associated with lower p∗H and p∗L.

g (qH ) θ
_

1-δ
qH-(qL-

g (qL ) θ
_

1-δ
)

qH

g (qL ) θ
_

1-δ

qL

pH
*

p
L*

Figure 3: Equilibrium prices under the parameter setting that n = 1, γ = 0.5, qH = 2qL, δ = 0.1,
θ̄ = 0.2, and g(q) = 1.

By combining Theorem 1 and Theorem 2, we characterize consumers’ application strategies,
acceptance rates, and expected utilities in the following corollary. Notice that we can unify the two
types of price equilibria by noting that when qH − pH = qL − pL, θH = 0 and [0, θH) = ∅.

Corollary 1: Assume the uniform distribution of F (·), concavity condition (10), and g(q) = 1 or
g(q) = q. In equilibrium, consumers with type θ ∈ [0, θH) apply to service providers of type H only,
and consumers with θ ∈

[
θH , θ̄

]
apply to both types of service providers. The equilibrium prices

satisfy that qH − p∗H ≥ qL − p∗L. The equilibrium queue lengths, acceptance rates, and consumers’
expected utilities, are respectively,

xH(θ) =


n

γθ̄
, 0 ≤ θ ≤ θH

n

θ̄
, θH < θ ≤ θ̄

, xL(θ) =

 0, 0 ≤ θ ≤ θH
n

θ̄
, θH < θ ≤ θ̄

;

bH(θ) =


e
−nθ
γθ̄ , 0 ≤ θ < θH(
qH − pH
qL − pL

)−(1−γ)

e−
nθ
θ̄ , θH ≤ θ ≤ θ̄

, bL(θ) =

 1, 0 ≤ θ < θH(
qH − pH
qL − pL

)γ
e−

nθ
θ̄ , θH ≤ θ ≤ θ̄

;

U(θ) =


(qH − pH)e

−nθ
γθ̄ , 0 ≤ θ ≤ θH

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e−
nθ
θ̄ , θH < θ ≤ θ̄

.
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Figure 4 plots the consumers’ application strategy (queue lengths), acceptance rates, as well as
their expected utility in both types of equilibria. In the equilibrium with qH−p∗H = qL−p∗L, two types
of service providers are of the same attractiveness to consumers, so consumers’ equilibrium queue
lengths and acceptance rates are exactly the same for two types of service providers. In contrast, in
the equilibrium with qH −p∗H > qL−p∗L, high-quality service providers are more attractive and thus
are more competitive among consumers. Consequently, the queue length for high-quality service
providers is longer than that for low-quality providers for low-cost consumers and the acceptance
rate for high-quality service providers is lower for all types of consumers.

Finally, we notice that for both types of equilibria, consumers with higher costs expect lower
utility. In general, it is straightforward to prove that U(θ) decreases with θ. More interestingly, if
we compare the expected utility of a consumer of cost type θ, U(θ) with that of a consumer of cost
type 0, U(0). We find that U(θ) < U(0)− θ, i.e., given all other agents’ strategy in equilibrium, a
consumer is willing to reimburse service providers of her serving cost so as to let herself be treated
as if her serving cost were zero. In other words, a consumer with higher serving cost is subject to
disproportionately lower acceptance rate in equilibrium.

3.1. Comparative Statics

Given the existence of multiple equilibria, it is difficult if not infeasible to analytically compute
comparative statics; instead, we plot the comparative statics numerically in Figure 5 below.

Let us understand the intuition behind the six plots in Figure 5. As the ratio of consumers
to service providers, n, gets larger, the service providers’ market becomes less competitive, so the
equilibrium prices can get higher. As the fraction of high-quality service providers, γ, gets larger,
the high-quality service providers’ market becomes more competitive, and their price p∗H can get
lower. As a result, the low-quality service providers’ price also gets lower. This happens despite
that low-quality service providers’ own market gets less competitive. In essence, the increase in
competition from high-quality service providers dominates the reduction in competition among
low-quality providers themselves, so low-quality providers’ prices will also decrease.

As consumers’ costs to serve, θ̄ increase, the equilibrium prices can surprisingly get lower. This
is in stark contrast to production costs, which usually have a positive pass-through to prices. The
intuition is as follows. As an individual service provider raises his price, he loses applications
from consumers with low serving costs, but gains applications from those with high serving costs.
Particularly, from equation (4) and (5), we find that the demand from consumer θ, −db0j (θ)

dθ
dθ

increases with the type-j service provider’s price p0
j for relatively small θ and increases with p0

j for
relatively large θ. When θ̄ gets higher, a service provider decreases his price to reduce demand from
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Figure 4: Equilibrium queue lengths, acceptance rates, and consumers’ expected utilities, under
the same parameter setting as with Figure 3. In the left panels, (p∗H , p

∗
L) = (0.787qH , 0.573qL) with

qH − p∗H = qL − p∗L; in the right panels, (p∗H , p
∗
L) = (0.666qH , 0.533qL) with qH − p∗H > qL − p∗L.
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Figure 5: Equilibrium prices under the same parameter setting as with Figure 3 except for the
parameter of interest.

21



high-cost consumers and increase demand from low-cost consumers. As a result, the equilibrium
price can get lower due to providers’ enhanced incentive to get better consumers. To put in another
word, in our model, the composition of consumers faced by each service provider is endogenous—
it depends on the service provider’s price and others’ prices. By setting a lower price, a service
provider can get more consumer applications, which enables him to cherrypick a low-cost consumer.
This incentive to lower price becomes stronger, when consumers’ serving costs get higher. With
similar intuition, one can see that as the matching platform’s commission fee (δ) increases, the
equilibrium prices can decrease.

Compared with the case g(q) = 1, we find that the equilibrium prices with g(q) = q are lower.
This is because when g(q) = q, high-quality service providers find it more costly to serve high-
cost consumers, which leads them to lower their prices to induce applications from the lowest-cost
customers. Consequently, low-quality service providers also have to lower their prices given the
increased competition from high-quality providers. Lastly, as service quality qH gets higher, the
equilibrium price p∗H gets higher, which is intuitive.

4. Comparison with Unilateral Ratings

In this section, we consider the unilateral rating system, where only service providers’ quality
is publicly observable and consumers’ cost information is not. With unilateral ratings, service
providers cannot discern consumers with low costs from those with high costs, so they will randomly
select a consumer when receiving multiple applications. This is obviously the extreme case, which
does not correspond to most real-world applications. Nevertheless, our objective is to understand
how information disclosure changes the market structure, and unilateral rating is the natural setting
to consider. As before, we consider the case of a large market with N,M → ∞, and focus on
symmetric equilibria.

Denote the probability that a consumer submits an application to a service provider of type j
by Aj, for j ∈ {H,L} and the queue length at a service provider of type j by Xj = NAj. The
normalization condition γMAH + (1− γ)MNL = 1 can be rewritten in terms of XH and XL as

γXH + (1− γ)XL = n. (11)

Given the service providers’ prices, pH and pL, a consumer’s acceptance rate by a service provider
of type j conditioning on that the consumer has submitted her application to the service provider,
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is,

Bj = lim
N,M→∞

N−1∑
i=0

(
N − 1

i

)
Aij (1− Aj)N−1−i 1

i+ 1
= lim

Nj ,M→∞

1− (1− Aj)N

NAj
=

1− e−Xj
Xj

. (12)

In equilibrium, a consumer’s expected utility from the two types of service providers should be the
same, denoted as U . Otherwise, consumers would deviate to applying to service providers with
higher expected utility, which lowers their acceptance rate until the expected utilities of the two
types are equal. Therefore, we have U = BH(qH − pH) = BL(qL − pL), i.e.,

U = (qH − pH)
1− e−XH
XH

= (qL − pL)
1− e−XL
XL

. (13)

By combining equations (11) and (13), we can in theory solve XH and XL and thus determine
U . Consider now an individual service provider j’s profit maximization problem. Given his posted
price p0

j , his acceptance rate is

B0
j = min

{
U

qj − p0
j

, 1

}
. (14)

Define function φ(x) ≡ [1− e−x] /x for x ∈ (0,∞) and φ(0) ≡ limx→0 φ(x) = 1. We know that φ(x)

is a continuous and strictly decreasing function on [0,∞). Given the service provider’s acceptance
rate B0

j , his queue length is X0
j = φ−1(B0

j ). The service provider’s expected profit, given his posted
price p0

j and the market prices pH and pL, will be

Π0
j(p

0
j ; pH , pL) =

[
(1− δ)p0

j −
θ̄

2
g(qj)

]
X0
jB

0
j

=


[
(1− δ)p0

j −
θ̄

2
g(qj)

](
U

qj − p0
j

)
φ−1

(
U

qj − p0
j

)
, if p0

j ≤ qj − U,

0, otherwise.
(15)

Based on equation (15), to ensure that the service provider has a nonnegative profit margin,
we must have p0

j ≥ θ̄g(qj)/ [2(1− δ)]; to ensure that the service provider has positive demand,
we must have p0

j ≤ qj − U . Therefore, we must have θ̄g(qj)/ [2(1− δ)] ≤ qj − U to ensure that
the service provider is willing to participate in the market. We verify this condition in equilib-
rium, which is similar to the full market coverage condition in the case of bilateral ratings. Given
the participation constraint, the service provider only considers p0

j ∈
[
θ̄g(qj)/ [2(1− δ)] , qj − U

]
,

because Π0
j

(
θ̄g(qj)/ [2(1− δ)] ; pH , pL

)
= Π0

j (qj − U ; pH , pL) = 0. In the appendix, we show that
Π0
j(p

0
j ; pH , pL) is concave in p0

j , so there exists a unique solution to the first-order optimality condi-

23



tion: ∂Π0
j(p

0
j ; pH , pL)/∂p0

j |p0
j=pj

= 0, which can be written as

qj − pj
U

− (1− δ)(qj − pj)
(1− δ)qj − θ̄

2
g(qj)

= ln

(
qj − pj
U

)
− ln

[
(1− δ)(qj − pj)

(1− δ)qj − θ̄
2
g(qj)

]
≥ 0, j ∈ {H,L}. (16)

The equilibrium is the set of (pH , pL, XH , XL, U) that satisfies equations (11), (13) and (16).
There are five equations in total to determine five unknown variables. In general, when the five
equations are non-degenerate, we have a unique equilibrium solution of (pH , pL, XH , XL, U). The
following theorem characterizes the existence and some properties of the equilibrium.

Theorem 3: With unilateral ratings, when equations (11), (13) and (16) are not degenerate, there
exists a unique pure strategy Nash equilibrium (p∗∗H , p

∗∗
L ) to the service providers’ pricing game. In

the case that qH > qL, and g(q) = 1 or g(q) = q, we have qH − p∗∗H > qL − p∗∗L .

It is difficult to compare the equilibria of unilateral and bilateral ratings analytically, because
we do not have closed-form expressions for equilibrium prices for both cases. We resort to numeric
examples instead. Figure 6 plots the price equilibrium with both bilateral and unilateral ratings.
With unilateral ratings, there is indeed a unique equilibrium. What is more interesting is that
compared with unilateral ratings, bilateral ratings may lead to higher equilibrium prices. This is
because bilateral ratings facilitate market segmentation and can thus soften the competition among
service providers. We solve the equilibrium for all parameter settings in the comparative statics in
Figure 5 and find that equilibrium prices with bilateral ratings are always higher than those with
unilateral ratings.

Although equilibrium prices under bilateral ratings are higher, one may suspect that consumer
surplus under bilateral ratings can still be higher because consumers get sorted according to their
costs and low-cost consumers can benefit from a high acceptance rate. In Figure 7, however, we show
that bilateral ratings can lower total consumer surplus. Consumer surplus is represented by the area
below the curve U(θ) in the case of bilateral ratings and U in the case of unilateral ratings. We find
that for consumers with low serving costs, indeed, bilateral ratings can increase their surplus because
of the higher acceptance rates; for consumers with high serving costs, however, bilateral ratings
decrease their surplus because of higher prices. Overall, in this example, bilateral ratings decreases
the total consumer surplus. We find that in other parameter settings, it is possible that the consumer
surplus is higher under bilateral ratings, when the low-cost consumers’ welfare gains dominate the
high-cost consumers’ welfare loss. In the peer-to-peer market, we should also be cautious about the
definition of consumer surplus, because service providers can also be individual consumers. In this
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Figure 6: Equilibrium prices with bilateral and unilateral ratings, under the same parameter setting
of Figure 3. The red dot is the equilibrium under unilateral ratings, and the black line is the
equilibria under bilateral ratings.

paper, when calculating consumer surplus, we only count the surplus of “consumers" not including
service providers’ surplus.

In Figure 8, we present the full decomposition of social welfare under one parameter setting.
We find that, bilateral ratings can increase both high- and low-quality service providers’ profits, as
well as the platform’s profit, at the cost of consumer surplus. The total social welfare is slightly
higher in the case of bilateral ratings in this example. In the case with g(q) = 1, the total surplus
entirely depends on the number of matches. We find that in other parameter settings, it is possible
that the total surplus is lower under bilateral ratings.

To summarize the findings in this section, we have compared the market structures between
bilateral and unilateral ratings. A numerically robust finding is that bilateral ratings lead to higher
prices than unilateral ratings, because bilateral ratings facilitate market segmentation and thus
soften the price competition. The welfare implications are not a clear-cut—bilateral ratings could
lead to either higher or lower total surplus as well as consumer surplus.

5. Incomplete Market Coverage

In this section, we consider the case of incomplete market coverage: Some consumers can be so
costly that it is not profitable for some service providers to serve them. Particularly, we consider

25



���������

bilateral ratings unilateral ratings

0 θ
θ0

qH
* -pH

*

U

Figure 7: Comparison of consumer surplus under the same parameter setting of Figure 3.
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Figure 8: Comparison of welfare breakdowns, under the same parameter setting of Figure 3.
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the most interesting case that the market coverage is complete for low-quality service providers but
incomplete for high-quality service providers, i.e.,

pH < θ̄g(qH)/(1− δ) and pL ≥ θ̄g(qL)/(1− δ). (17)

This setting corresponds to some real-world circumstances we observe in peer-to-peer markets, such
as Airbnb. Owners of high-end apartments may lose money by hosting some nasty guests, while
owners of inexpensive apartments may have little to lose.

We consider both cases g(q) = 1 and g(q) = q below. In the case of g(q) = 1, condition (17)
implies that pH < θ̄/(1− δ) ≤ pL, which implies that qH − pH > qL − pL. In the case of g(q) = q,
condition (17) implies that 0 ≤ qL − pL ≤ qL

[
1− θ̄/(1− δ)

]
, which implies that θ̄ + δ ≤ 1. Under

this condition, we have that qH−pH > qH
[
1− θ̄/(1− δ)

]
≥ qL

[
1− θ̄/(1− δ)

]
≥ qL−pL. Therefore,

the incomplete market coverage condition in equation (17) implies that qH − pH > qL− pL for both
cases that g(q) = q and g(q) = 1.

Similar to Theorem 1, we characterize consumers’ application strategies given service providers’
posted prices pH and pL in the following theorem. The proof is similar and thus omitted.

Theorem 4: Under the incomplete market condition (17) and θ̄+δ ≤ 1, we have qH−pH > qL−pL.

1. If qH−pH
qL−pL

< e
n
γ
F
(

(1−δ)pH
g(qH )

)
, consumers with type θ ∈ [0, θH ] apply to service providers of type

H only, consumers with θ ∈ (θH , (1− δ)pH/g(qH)] apply to both types of service providers,
and consumers with θ ∈

(
1− δ)pH/g(qH), θ̄

]
apply to service providers of type L only. For

θ ∈
[
0, θ̄
]
,

xH(θ) =



n

γ
f(θ), 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ (1− δ)pH
g(qH)

0,
(1− δ)pH
g(qH)

< θ ≤ θ̄

, xL(θ) =


0, 0 ≤ θ ≤ θH

nf(θ), θH < θ ≤ (1− δ)pH
g(qH)

n

1− γ
f(θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄

,

U(θ) =



(qH − pH)e−
n
γ
F (θ), 0 ≤ θ ≤ θH

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e−nF (θ), θH < θ ≤ (1− δ)pH
g(qH)

(qH − pH)

(
qH − pH
qL − pL

)−(1−γ)

e
γ

1−γ nF
(

(1−δ)pH
g(qH )

)
e−

1
1−γ nF (θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄

.

2. Otherwise, if qH−pH
qL−pL

≥ e
n
γ
F
(

(1−δ)pH
g(qH )

)
, consumers with type θ ∈ [0, (1− δ)pH/g(qH)] apply to

service providers of type H only, and consumers with θ ∈
(
1− δ)pH/g(qH), θ̄

]
apply to service
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providers of type L only. For θ ∈
[
0, θ̄
]
,

xH(θ) =


n

γ
f(θ), 0 ≤ θ ≤ (1− δ)pH

g(qH)

0,
(1− δ)pH
g(qH)

< θ ≤ θ̄
, xL(θ) =


0, 0 ≤ θ ≤ (1− δ)pH

g(qH)
n

1− γ
f(θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄
,

U(θ) =


(qH − pH)e−

n
γ
F (θ), 0 ≤ θ ≤ (1− δ)pH

g(qH)

(qL − pL)e
1

1−γ nF
(

(1−δ)pH
g(qH )

)
e−

1
1−γ nF (θ),

(1− δ)pH
g(qH)

< θ ≤ θ̄
.

The big difference, when compared with the main model of complete market coverage, is that
consumers with cost type θ ∈

(
(1− δ)pH/g(qH), θ̄

]
may prefer to apply to high-quality service

providers. However, high-quality service providers would refuse to serve them, because the marginal
benefit does not offset the serving cost. These consumers therefore have no other choice but
to apply to low-quality service providers. As a result, in the second case of Theorem 4 when
qH−pH
qL−pL

≥ e
n
γ
F
(

(1−δ)pH
g(qH )

)
, U(θ) is not continuous—it jumps downward at θ = (1− δ)pH/g(qH). Figure

9 characterizes the resulting market segmentations. We find that under incomplete market cover-
age, market segmentation could become even more complicated, with low-cost consumers applying
to high-quality service providers only, high-cost consumers applying to low-quality service providers
only, and medium-cost consumers applying to both.
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Figure 9: All potential market segmentations under incomplete market coverage.

Given consumers’ application strategies and expected utilities in Theorem 4, we can consider
an individual service provider’s pricing decision along similarly as in our main model. We relegate
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the details in Appendix.

Instead of fully characterizing the equilibrium, which is quite complicated, we are interested in
one particular property of the equilibrium. Figure 10 demonstrates a specific parameter setting to
illustrate our idea. This is the setting where the range of consumers’ serving costs is large with
θ̄ = 0.8, and the fraction of high-quality service providers is large with γ = 0.9. In this case,
competition among high-quality service providers drives down their equilibrium price, to the degree
that the equilibrium price of high-quality service providers can be lower than that of low-quality
service providers, as shown by the solid line in Figure 10. This occurs because consumers with
θ ∈ ((1 − δ)pH/g(qH), θ̄] are too costly for high-quality service providers to serve. Low-quality
service providers face relatively less competition in serving these high-cost consumers, and charge
a high price to cover the high serving costs. On the other hand, high-quality service providers
charge a low price to cherrypick the low-cost consumers to serve. This is in stark contrast with
the price competition outcomes in traditional vertically differentiated markets, where high-quality
sellers always charge a higher price.

pH = pL

0 g (qH ) θ
_

1-δ

g (qL ) θ
_

1-δ

qL

pH

p
L

Figure 10: Price equilibria under incomplete market coverage, under the parameter setting that
n = 1, γ = 0.9, qH = 2qL, δ = 0.1, θ̄ = 0.8, and g(q) = q.

6. Conclusion

This paper studies a peer-to-peer platform that matches heterogeneous service providers with het-
erogenous consumers. Under a competitive search framework, we study how bilateral ratings, which
reveal providers’ service quality and consumers’ serving costs, influence market competition and seg-
mentation. The friction in our model comes not from search costs but from potential coordination
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failures: some providers may receive more than one applications although they can serve only one
consumer, while other providers may receive no application although they can also serve a consumer.
We find that two kinds of equilibria exist with bilateral ratings, although it is often the case that
high-quality service providers would yield more net utility (i.e., net of price paid) for a consumer
that gets served. In the first type of equilibria, high-quality service providers post a high price and
serve all types of consumers, while low-quality service providers post a low price and serve only
consumers with high serving costs (i.e., bad reviews). Bilateral ratings may improve the efficiency
of matching in this case in the sense that good providers are more likely to be matched with good
customers. In the second type of equilibria, both high- and low-quality service providers serve all
consumers.

We find that across all the equilibria, consumers with high serving costs expect lower utility
in equilibrium. In particular, a consumer may be willing to reimburse the service provider of her
serving cost in order to be treated as a zero-cost consumer. In other words, consumers with high
serving costs are subject to disproportionately low acceptance rates in equilibrium and pay an
extremely high premium for their bad reputation.

Comparative statics suggest that equilibrium prices tend to be driven by the ratio of consumers
to service providers and the fraction of high-quality providers in the market. When the ratio of
consumers to providers is high, providers have more market power and prices get higher. When
the fraction of high-quality providers is high, the competition of them becomes more fierce, which
drives down their equilibrium prices, as well as the low-quality providers’ prices. Interestingly,
when the consumers’ costs to serve increase across the market, it is possible for the prices to
decrease. This is because the increased costs motivate the high-quality providers to compete on
price more aggressively in order to get the low-cost consumer, causing prices to decrease across the
board. Similarly, when the platform charges a higher commission rate so that the providers’ margin
decreases, we may also expect the equilibrium prices to decrease.

We also analyze the matching game with unilateral ratings, where only service providers are
rated, and find that although bilateral ratings may generally lead to higher social welfare, it could
soften service providers’ competition through market segmentation and lead to higher equilibrium
prices, compared with unilateral ratings.

Our analysis of the case of incomplete market coverage shows that when consumers have high
serving costs in general and the fraction of high-quality service providers is high, competition among
providers can drive down prices so much that the equilibrium price of high-quality providers becomes
lower than that of low-quality providers. In this case, the low-quality providers do not compete for
the low-cost consumers and will choose to serve the high-cost consumers at a premium price.
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There are several directions for future research. First, we have assumed that customer reviews
can accurately reveal the customer’s type (i.e., her serving cost). In reality, there are strategic
and fake reviews, which might make the ratings less informative. However, our model can still
provide some useful insights as long as the overall review quality is informative to allow a significant
amount of uncertainty about the cost to serve the customer to be resolved, which is probably
true for repeatable service interactions over a long time horizon where reputation systems tend to
be informative and truthful due to the risks of future punishments. With that said, it may be
interesting to study the dynamic process of the review systems and other effects of reviews on peer-
to-peer platforms (e.g., the revelation of other types of consumer information such as demographic
information). Second, we only consider the matching game of a single round. It may be interesting
to extend the current model to multiple rounds of matching and further explore the dynamics in
the matching outcomes.
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APPENDIX

Proof of Theorem 1:
Proof. Let us start with the following lemmas.

Lemma A1: Suppose qL − pL > 0. If there exists θ′ ∈
[
0, θ̄
]
such that xH(θ′) > 0 and xL(θ′) = 0,

then we have that xH(θ) > 0 and xL(θ) = 0 for ∀θ ∈ [0, θ′].

Proof. The lemma is obviously true for θ′ = 0. For θ′ > 0, we prove the lemma by contradiction.
Suppose there exists θ′ ∈

(
0, θ̄
]
such that xH(θ′) > 0 and xL(θ′) = 0, and there exists θ′′ ∈ [0, θ′)

such that xH(θ′′) = 0 or xL(θ′′) > 0. First, note that by equation (1) and f(·) > 0, the condition
that xH(θ′′) = 0 or xL(θ′′) > 0 is equivalent to xL(θ′′) > 0.

According to consumers’ application strategy in equation (3), the condition xH(θ′) > 0 and
xL(θ′) = 0 imply that,

U(θ′) = e−
∫ θ′
0 xH(t)dt(qH − pH) > e−

∫ θ′
0 xL(t)dt(qL − pL),

i.e., e
∫ θ′
0 (xH(t)−xL(t))dt <

qH − pH
qL − pL

. (i)

Similarly, by applying equation (3) to the condition xL(θ′′) > 0, we have that,

U(θ′′) = e−
∫ θ′′
0 xL(t)dt(qL − pL) ≥ e−

∫ θ′′
0 xH(t)dt(qH − pH),

i.e., e
∫ θ′′
0 (xH(t)−xL(t))dt ≥ qH − pH

qL − pL
. (ii)

Combining equations (i) and (ii), we have that,

e
∫ θ′′
0 (xH(t)−xL(t))dt ≥ qH − pH

qL − pL
> e

∫ θ′
0 (xH(t)−xL(t))dt.

i.e.,
∫ θ′

θ′′
(xH(t)− xL(t)) dt < 0. (iii)

Meanwhile, by the normalization condition in equation (1), we know that xH(θ′)−xL(θ′) = n
γ
f(θ′) >

0. Because both xH(θ) and xL(θ) are piecewise continuous, we have that xH(θ)−xL(θ) is piecewise
continuous. Thus, there exists a neighborhood around θ′, such that for all θ within the neighborhood,
xH(θ) − xL(θ) > n

2γ
f(θ′) > 0. Without loss of generality, let us assume that xH(θ) − xL(θ) is

left-continuous, so the neighborhood takes the form of [θ′ − ε, θ′], where ε > 0. Similarly, if
xH(θ) − xL(θ) is right-continuous instead, the neighborhood takes the form of [θ′, θ′ + ε], under
which case, we can redefine θ′ as θ′ + ε for the following discussion. To summarize, we have argued
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that xH(θ)− xL(θ) > n
2γ
f(θ′) > 0 for θ ∈ [θ′ − ε, θ′]. Now we can rewrite the inequality (iii) as the

following,

0 >

∫ θ′

θ′′
(xH(t)− xL(t)) dt =

∫ θ′−ε

θ′′
(xH(t)− xL(t)) dt+

∫ θ′

θ′−ε
(xH(t)− xL(t)) dt

>

∫ θ′−ε

θ′′
(xH(t)− xL(t)) dt+

n

2γ
f(θ′)ε > 0,

which is a contradiction. The last inequality above is due to the fact that inequality (iii) is valid
for any θ′ and θ′′ that satisfy their definitions, so we can let θ′′ and θ′− ε be infinitely close to each
other, and consequently

∫ θ′−ε
θ′′

(xH(t)− xL(t)) dt can be infinitely close to zero. Therefore, we have
proved the original statement in Lemma A1.

By the exactly same logic, we can prove the following lemma, so its proof is omitted.

Lemma A2: Suppose qH − pH > 0. If there exists θ′ ∈
[
0, θ̄
]
such that xL(θ′) > 0 and xH(θ′) = 0,

then we have that xL(θ) > 0 and xH(θ) = 0 for ∀θ ∈ [0, θ′].

Now, let us prove Theorem 1. Let us first consider the case that qH − pH ≥ qL− pL > 0. By the
normalization condition in equation (1), we have that 0 ≤ xH(θ) ≤ n

γ
f(θ) and 0 ≤ xL(θ) ≤ n

1−γf(θ).
This implies that,

bH(θ)(qH − pH) = e−
∫ θ
0 xH(t)dt(qH − pH)

≥ e−
∫ θ
0
n
γ
f(t)dt(qH − pH)

= e−
n
γ
F (θ)(qH − pH)

≥ e−
n
γ
F (θ) qH − pH

qL − pL
(qL − pL)e−

∫ θ
0 xL(t)dt

= e−
n
γ
F (θ) qH − pH

qL − pL
× bL(θ)(qL − pL)

> bL(θ)(qL − pL), when θ < θH .

By equation (3), the above inequality implies that xH(θ) = n
γ
f(θ) and xL(θ) = 0 for θ ∈ [0, θH). If

θH ≥ θ̄, we have effectively determined xj(θ) (j ∈ {H,L}) for all θ ∈
[
0, θ̄
]
; on the other hand, if

θH < θ̄, we still need to determine xj(θ) (j ∈ {H,L}) for θ ∈
[
θH , θ̄

]
. Now consider the case that

θH < θ̄. Let us try to pin down xj(θ) (j ∈ {H,L}) for θ ∈
(
θH , θ̄

]
first, and then we will determine

xj(θH) (j ∈ {H,L}).

First, we know that it is impossible for xL(θ) > 0 and xH(θ) = 0 for θ ∈
(
θH , θ̄

]
, because by

Lemma A2, this will imply xL(θ) > 0 and xH(θ) = 0 for θ ∈ [0, θH), which is a contradiction.
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Second, we also know that it is impossible for xH(θ) > 0 and xL(θ) = 0 for θ ∈
(
θH , θ̄

]
, because by

Lemma A1, this will imply that for θ ∈
(
θH , θ̄

]
,

bH(θ)(qH − pH) = e−
∫ θ
0
n
γ
f(t)dt(qH − pH) = e−

n
γ
F (θ) qH − pH

qL − pL
(qL − pL) < (qL − pL) = bL(θ)(qL − pL),

which is a contradiction. Therefore, we must have xH(θ) > 0 and xL(θ) > 0 for θ ∈
(
θH , θ̄

]
. By

equation (3), this implies that,

e−
∫ θ
0 xL(t)dt(qL − pL) = e−

∫ θ
0 xH(t)dt(qH − pH)

i.e., e−
∫ θ
θH

xL(t)dt
(qL − pL) = e−

∫ θH
0 xH(t)dte

−
∫ θ
θH

xH(t)dt
(qH − pH)

i.e., e−
∫ θ
θH

xL(t)dt
= e

−
∫ θ
θH

xH(t)dt

i.e.,
∫ θ

θH

(xH(t)− xL(t)) dt = 0.

Notice that the above equality is valid for ∀θ ∈
(
θH , θ̄

]
, we must have xH(θ) = xL(θ) for ∀θ ∈

(
θH , θ̄

]
.

By piece-wise continuity of xH(θ) and xL(θ), we must also have that xH(θH) = xL(θH). By the
normalization condition in equation (1), we have xH(θ) = xL(θ) = nf(θ) for ∀θ ∈

[
θH , θ̄

]
.

We have completely proved the theorem for the case qH − pH ≥ qL − pL > 0 above. The proof
for the other case with qL − pL ≥ qH − pH > 0 follows the exactly same line, and thus is omitted.
Lastly, U(θ) can be calculated by equation (3) given xH(θ) and xL(θ).

Proof of The Concavity Condition in Equation (10):
Proof. For p0

j ∈ [qj − U(0), qj], π0
j (p

0
j ; pH , pL) is given by the second case in equation (5).

π0
j (p

0
j ; pH , pL) is concave if and only if,

∂π0
j (p

0
j ; pH , pL)

∂(p0
j)

2
= − 1

(qj − p0
j)

3

{
2
[
(1− δ)qj − θ̄g(gj)

]
U(θ̄)

+ g(qj)

[
2

∫ θ̄

U−1(qj−p0
j )

U(θ)dθ +
(qj − p0

j)
2

U ′
(
U−1(qj − p0

j)
)]} ≤ 0. (iv)

By equation (3), we know that U(θ) = (qj∗ − pj∗)e
−
∫ θ
0 xj∗ (t)dt, where j∗ ∈ {H,L} is defined by

xj∗ > 0. Therefore, U ′(θ) = −U(θ)xj∗(θ). By substituting this equality back to inequality (iv), we

34



can rearrange and rewrite inequality (iv) as the following inequality,

xj∗
(
U−1(qj − p0

j)
)
≥

(qj − p0
j)

2
[(

(1−δ)qj
g(qj)

− θ̄
)
U(θ̄) +

∫ θ̄
U−1(qj−p0

j )
U(t)dt

] .
Denote θ = U−1(qj − p0

j), which ranges in [0, θ̄]. Notice that xj∗ is given by Theorem 1. We can
rewrite the above inequality as equation (10).

Proof of Theorem 2:
Proof. To prove the existence of Nash equilibria with qH − p∗H = qL − p∗L = ε ∈ (0, ε̄], we need to
show that condition (8) is satisfied for ε ∈ (0, ε̄]. In fact, condition (8) can be simplified as, qH − p∗H = qL − p∗L = ε,

(1− δ)ε− 1

n
θ̄g(qj)− e−n

[
(1− δ)qj −

n+ 1

n
θ̄g(qj)

]
≤ 0, j ∈ {H,L}.

This implies that ε ≤ ε̄. To show that ε̄ ≥ θ̄g(gL)
2(1−δ)n > 0, we only need to take θ = 0 and qH − p∗H =

qL − p∗L in concavity condition (10).

To show that in equilibrium, qH − p∗H ≥ qL − p∗L, we need to show that equation (7) never
happens in equilibrium, given the concavity condition (10). Equivalently, we need to show that
under the concavity condition (10),

If


qH − p∗H < qL − p∗L

(1− δ)(qH − p∗H)2 −
[
(1− δ)qH − g(qH)θ̄

]
U(θ̄)− g(qH)

∫ θ̄

θL

U(θ)dθ = 0
,

then (1− δ)(qL − p∗L)2 −
[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

0

U(θ)dθ > 0.

By substituting the expression of U(θ) in the second case of Theorem 1, the above statement can
be equivalently written as,

If


qH − p∗H < qL − p∗L

(1− δ)(qH − p∗H)− 1

n
g(qH)θ̄ −

[
(1− δ)qH −

n+ 1

n
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)

= 0
,

then (1− δ)(qL − p∗L)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)]
−
[
(1− δ)qL −

(
1 +

1

n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ
> 0.
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In fact, we have that,

(1− δ)(qL − p∗L)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)]
−
[
(1− δ)qL −

(
1 +

1

n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ
=

(
qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)

+
1

2n
g(qL)θ̄e−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qL −

(
1 +

1

2n

)
g(qL)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1
}

≥
(
qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)

+
1

2n
g(qL)θ̄e−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1
}

(v)

=

(
qL − p∗L
qH − p∗H

){
(1− δ)(qH − p∗H)− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)](
qH − p∗H
qL − p∗L

)

+
1

2n
g(qL)θ̄e−n

(
qH − p∗H
qL − p∗L

)γ+1

−
[
(1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)γ+1

−

[
(1− δ)(qH − p∗H)− 1

n
g(qH)θ̄ −

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)
]}

=

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](
qH − p∗H
qL − p∗L

)
+

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)
[

1−
(
qH − p∗H
qL − p∗L

)2
]}

≥
(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](
qH − p∗H
qL − p∗L

)
− 1

2n
g(qH)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)2
]}

. (vi)
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Inequality (v) is due to that

(1− δ)qL −
(

1 +
1

2n

)
g(qL)θ̄ ≤ (1− δ)qH −

(
1 +

1

2n

)
g(qH)θ̄.

This inequality is obviously true if g(q) = 1. To show it is true if g(q) = q, we need to show that
(1− δ)−

(
1 + 1

2n

)
θ̄ ≥ 0. In fact, letting θ = θ̄ in equation (10), we have that,

n

θ̄
≥ 1

2
(

(1−δ)qj
g(qj)

− θ̄
) ,

which implies that (1− δ)−
(
1 + 1

2n

)
θ̄ ≥ 0 when g(q) = q.

Inequality (vi) is due to that

[
(1− δ)qH −

(
1 +

1

n

)
g(qH)θ̄

]
e−n

(
qH − p∗H
qL − p∗L

)−(1−γ)

≥ − 1

2n
g(qH)θ̄.

This inequality can be obtained if letting θ = θL and j = H in equation (10).

To continue the derivation following equation (vi), we have,

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](
qH − p∗H
qL − p∗L

)
− 1

2n
g(qH)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)2
]}

=

(
qL − p∗L
qH − p∗H

){
1

n
g(qH)θ̄

[
1

2
+

(
qH − p∗H
qL − p∗L

)2

− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](
qH − p∗H
qL − p∗L

)
≥
(
qL − p∗L
qH − p∗H

){
1

n
g(qL)θ̄

[
1

2
+

(
qH − p∗H
qL − p∗L

)2

− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ+1
]

− 1

n
g(qL)θ̄

[
(1− γ) + γ

(
qH − p∗H
qL − p∗L

)
− 1

2
e−n

(
qH − p∗H
qL − p∗L

)γ](
qH − p∗H
qL − p∗L

)
(vii)

=

(
qL − p∗L
qH − p∗H

)
1

2n
g(qL)θ̄

[
1−

(
qH − p∗H
qL − p∗L

)][
1−

(
qH − p∗H
qL − p∗L

)
+ 2γ

(
qH − p∗H
qL − p∗L

)]
> 0. (viii)

Inequality (vii) is due to g(qH) ≥ g(qL), and inequality (viii) is due to 0 <
qH−p∗H
qL−p∗L

< 1.
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Proof of Concavity of Π0
j(p

0
j ; pH , pL):

Proof.

∂2Π0
j

∂(p0
j)

2
= −

W

(
− qj−p0

j

U
e−

qj−p
0
j

U

)[
qj−p0

j

U
+W

(
− qj−p0

j

U
e−

qj−p
0
j

U

)]
2(qj − p0

j)
3

[
1 +W

(
− qj−p0

j

U
e−

qj−p0j
U

)]3

×

{
− 4(1− δ)U(qj − p0

j)

[
1 +W

(
−
qj − p0

j

U
e−

qj−p
0
j

U

)]2

− 2U

[
(1− δ)p0

j −
θ̄

2
g(qj)

] [
qj − p0

j

U
+ 3W

(
−
qj − p0

j

U
e−

qj−p
0
j

U

)
+ 2W

(
−
qj − p0

j

U
e−

qj−p
0
j

U

)2
]}

,

where W (z) is the product logarithm function, which is defined as the upper branch of the inverse

function of z = WeW . We notice that qj−p0
j

U
≥ 1, so 0 > W

(
− qj−p0

j

U
e−

qj−p
0
j

U

)
≥ −1 ≥ − qj−p0

j

U
. We

can further show that qj−p0
j

U
+ 3W

(
− qj−p0

j

U
e−

qj−p
0
j

U

)
+ 2W

(
− qj−p0

j

U
e−

qj−p
0
j

U

)2

≥ 0. We also notice

that (1− δ)p0
j − θ̄

2
g(qj) ≥ 0. According to all these inequalities, it is straightforward to verify that

∂2Π0
j

∂(p0
j )

2 ≤ 0, and thus Π0
j(p

0
j ; pH , pL) is a concave function in p0

j .

Proof of Theorem 3:
Proof. Because Π0

j(p
0
j ; pH , pL) is continuous in p0

j , pH and pL, and concave in p0
j , existence of a pure

strategy Nash equilibrium is guaranteed by classic results, such as Proposition 8.D.3 on page 260
of Mas-Collell et al. (1995), except that now we have symmetric infinite games. Cheng et al. (2004)
extend the classic results to consider symmetric infinite games, and show that a symmetric pure-
strategy Nash equilibrium exists with compact, convex strategy spaces and continuous, quasiconcave
utility functions.

We prove qH − p∗∗H > qL − p∗∗L by contradiction. Suppose qH − p∗∗H ≤ qL − p∗∗L . We know that
(1 − δ)qH − θ̄

2
g(qH) > (1 − δ)qL − θ̄

2
g(qL) in the case that qH > qL, and g(q) = 1 or g(q) = q.

Therefore, we have,
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2
g(qH)

<
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2
g(qL)

< 1,

which implies that

(1− δ)(qH − pH)

(1− δ)qH − θ̄
2
g(qH)

− ln

[
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2
g(qH)

]
>

(1− δ)(qL − pL)

(1− δ)qL − θ̄
2
g(qL)

− ln

[
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2
g(qL)

]
.
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Meanwhile, we know that,
1 ≤ qH − pH

U
≤ qL − pL

U
,

which implies that,

qH − pH
U

− ln

(
qH − pH

U

)
≤ qL − pL

U
− ln

(
qL − pL
U

)
.

By equation (16), we know that

(1− δ)(qH − pH)

(1− δ)qH − θ̄
2
g(qH)

− ln

[
(1− δ)(qH − pH)

(1− δ)qH − θ̄
2
g(qH)

]
=
qH − pH

U
− ln

(
qH − pH

U

)
,

which implies that

(1− δ)(qL − pL)

(1− δ)qL − θ̄
2
g(qL)

− ln

[
(1− δ)(qL − pL)

(1− δ)qL − θ̄
2
g(qL)

]
<
qL − pL
U

− ln

(
qL − pL
U

)
.

This is a contradiction to equation (16). Therefore, we have that qH − p∗∗H > qL − p∗∗L .

Provider’s Pricing Problem under Incomplete Market Coverage:
Let us first consider a service provider of type j posting price p0

j . Similar to equation (5) in the
case of complete market coverage, a low-type service provider’s profit function can be written as

π0
L(p0

L; pH , pL) =



−(1− δ)
[
U(0)− U(θ̄)

]
−
∫ θ̄

0
[(1− δ)qL − g(qL)θ]U ′(θ)dθ

qL − p0
L

, p0
L ≤ qL − U(0),

(1− δ)U(θ̄) + (1− δ)p0
L − g(qL)U−1(qL − p0

L)

−
(1− δ)U(θ̄)qL + g(qL)

[∫ θ̄
U−1(qL−p0

L)
U(θ)dθ − θ̄U(θ̄)

]
qL − p0

L

otherwise.

(ix)

Different from the case of complete market coverage, U(·) is no longer a continuous function when
qH−pH
qL−pL

≥ e
n
γ
F
(

(1−δ)pH
g(qH )

)
. Therefore, U−1(·) is not well defined. By redefining U−1(u) = inf

{
x ∈

[0, θ̄]
∣∣∣U(x) ≤ u

}
, one can show that equation (ix) still holds.

Consider now a high-type service provider, whose profit function is a little different from equation
(5) in that the service provider would not serve any consumer with cost type θ ∈ ((1−δ)pH/g(qH), θ̄]

and therefore the upper limit of the integral in equation (5) is replaced by (1−δ)pH/g(qH) in writing
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down the service provider’s profit function:

π0
H(p0

H ; pH , pL) =



−(1− δ)
[
U(0)− U

(
(1− δ)p0

H

qH

)]

−
∫ (1−δ)p0H

qH
0 [(1− δ)qH − g(qH)θ]U ′(θ)dθ

qH − p0
H

, p0
H ≤ qH − U(0),

(1− δ)U
(

(1− δ)p0
H

qH

)
+ (1− δ)p0

H

−g(qH)U−1(qH − p0
H)−

(1− δ)U
(

(1−δ)p0
H

qH

)
qH

qH − p0
H

−
g(qH)

[∫ (1−δ)p0H
qH

U−1(qH−p0
H)
U(θ)dθ − (1−δ)p0

H

qH
U
(

(1−δ)p0
H

qH

)]
qH − p0

H

, otherwise.

(x)

Following similar analysis in Section 2.2, we can write down the first-order optimality conditions to
the profit maximization problems whose objectives are given in equations (ix) and (x), along with
the incomplete market coverage condition, as follows:

p∗H < θ̄g(qH)/(1− δ)
p∗L ≥ θ̄g(qL)/(1− δ)

(1− δ)(qH − p∗H)2 − (1− δ)(qH − p∗H)U

(
(1− δ)p∗H

qH

)
− g(qH)

∫ (1−δ)p∗H
qH

0

U(θ)dθ ≤ 0

(1− δ)(qL − p∗L)2 −
[
(1− δ)qL − g(qL)θ̄

]
U(θ̄)− g(qL)

∫ θ̄

min

{
θH ,

(1−δ)p∗
H

qH

} U(θ)dθ = 0

(xi)
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